Recently, attentional arbitrary style transfer methods have been proposed to achieve fine-grained results, which manipulates the point-wise similarity between content and style features for stylization. However, the attention mechanism based on feature points ignores the feature multi-manifold distribution, where each feature manifold corresponds to a semantic region in the image. Consequently, a uniform content semantic region is rendered by highly different patterns from various style semantic regions, producing inconsistent stylization results with visual artifacts. We proposed the progressive attentional manifold alignment (PAMA) to alleviate this problem, which repeatedly applies attention operations and space-aware interpolations. The attention operation rearranges style features dynamically according to the spatial distribution of content features. This makes the content and style manifolds correspond on the feature map. Then the space-aware interpolation adaptively interpolates between the corresponding content and style manifolds to increase their similarity. By gradually aligning the content manifolds to style manifolds, the proposed PAMA achieves state-of-the-art performance while avoiding the inconsistency of semantic regions. Codes are available at https://github.com/computer-vision2022/PAMA.
翻译:最近,为了取得细微的分类结果,人们提出了专横的任意风格传输方法,以达到细微的分类结果,这种方法操纵了内容和风格功能之间的点相似性,然而,基于特征点的注意机制忽略了每个特性的多层分布,其中每个特性的多元性与图像中的语义区域相对应。因此,不同风格的语义区域有着截然不同的形态,形成了一个内容统一的语义区域,从而产生了与视觉工艺品不相一致的结果。我们建议了渐进式的注意方(PAMA),以缓解这一问题,这一问题反复应用了注意操作和空间觉间互换。注意的操作重新排列样式根据内容特征的空间分布动态地特征特征。这使得内容和风格的公式在特征图上对应。随后,空间观测的内插式在相应内容和风格的矩阵之间形成了高度不同的调和调,从而增加了相似性。通过逐步将内容的方格与样式调,拟议的PAMAAMA达到“状态-艺术”的性能,同时避免了语义区域的不一致性。