Snow density estimates as a function of depth are used for understanding climate processes, evaluating water accumulation trends in polar regions, and estimating glacier mass balances. The common and interpretable physically-derived differential equation models for snow density are piecewise linear as a function of depth (on a transformed scale); thus, they can fail to capture important data features. Moreover, the differential equation parameters show strong spatial autocorrelation. To address these issues, we allow the parameters of the physical model, including random change points over depth, to vary spatially. We also develop a framework for functionally smoothing the physically-motivated model. To preserve inference on the interpretable physical model, we project the smoothing function into the physical model's spatially varying null space. The proposed spatially and functionally smoothed snow density model better fits the data while preserving inference on physical parameters. Using this model, we find significant spatial variation in the parameters that govern snow densification.
翻译:雪积密度估计是深度的函数,用于了解气候过程,评估极地地区的水积累趋势,估计冰川质量平衡。对于雪积密度,常见的和可解释的物理衍生差异方程式模型是按深度函数(在变换的尺度上)的片形线性模型;因此,它们可能无法捕捉重要的数据特征。此外,不同的方程式参数显示强烈的空间自动关系。为了解决这些问题,我们允许物理模型的参数,包括深度的随机变化点,进行空间变化。我们还为物理动力模型的功能平滑开发了一个框架。为了保持可解释物理模型的推论,我们将滑动功能投射入物理模型空间变化的空空空空空间中。拟议的空间和功能平滑雪密度模型在保存物理参数的推理时,更符合数据。我们使用这一模型,发现关于雪积密度的参数存在重大的空间变化。