In micro- and nano-scale systems, particles can be moved by using an external force like gravity or a magnetic field. In the presence of adhesive particles that can attach to each other, the challenge is to decide whether a shape is constructible. Previous work provides a class of shapes for which constructibility can be decided efficiently, when particles move maximally into the same direction on actuation. In this paper, we consider a stronger model. On actuation, each particle moves one unit step into the given direction. We prove that deciding constructibility is NP-hard for three-dimensional shapes, and that a maximum constructible shape can be approximated. The same approximation algorithm applies for 2D. We further present linear-time algorithms to decide whether a tree-shape in 2D or 3D is constructible. If scaling is allowed, we show that the $c$-scaled copy of every non-degenerate polyomino is constructible, for every $c \geq 2$.
翻译:在微型和纳米规模系统中,粒子可以使用外部力来移动,如重力或磁场。在存在可相互连接的粘合颗粒的情况下,挑战在于决定形状是否可建构。先前的工作提供了一组形状,当粒子在激活时最大程度上移动到同一方向时,可以有效决定可建构性。在本文中,我们考虑一个更强大的模型。在激活时,每个粒子向给定方向移动一个单位。我们证明,三维形状的建构性是坚固的,并且可以近似一个最大可建构的形状。同样的近似算法适用于 2D。我们进一步提出线性时间算法,以确定2D 或 3D 中的树形状是否可建构。如果允许缩放,我们将显示每个非脱色多色度的美元缩放复制件是可建构的,每美元=2美元。