In micro- and nano-scale systems, particles can be moved by using an external force like gravity or a magnetic field. In the presence of adhesive particles that can attach to each other, the challenge is to decide whether a shape is constructible. Previous work provides a class of shapes for which constructibility can be decided efficiently, when particles move maximally into the same direction on actuation. In this paper, we consider a stronger model. On actuation, each particle moves one unit step into the given direction. We prove that deciding constructibility is NP-hard for three-dimensional shapes, and that a maximum constructible shape can be approximated. The same approximation algorithm applies for 2D. We further present linear-time algorithms to decide whether a tree-shape in 2D or 3D is constructible. If scaling is allowed, we show that the $c$-scaled copy of every non-degenerate polyomino is constructible, for every $c \geq 2$.


翻译:在微型和纳米规模系统中,粒子可以使用外部力来移动,如重力或磁场。在存在可相互连接的粘合颗粒的情况下,挑战在于决定形状是否可建构。先前的工作提供了一组形状,当粒子在激活时最大程度上移动到同一方向时,可以有效决定可建构性。在本文中,我们考虑一个更强大的模型。在激活时,每个粒子向给定方向移动一个单位。我们证明,三维形状的建构性是坚固的,并且可以近似一个最大可建构的形状。同样的近似算法适用于 2D。我们进一步提出线性时间算法,以确定2D 或 3D 中的树形状是否可建构。如果允许缩放,我们将显示每个非脱色多色度的美元缩放复制件是可建构的,每美元=2美元。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
76+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
重点实验室系列报告-ClickHouse Introduction and Deep Dive
中国科学院网络数据重点实验室
9+阅读 · 2019年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
WebAssembly在QQ邮箱中的一次实践
IMWeb前端社区
13+阅读 · 2018年12月19日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
12+阅读 · 2018年6月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
0+阅读 · 2021年7月2日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
76+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
重点实验室系列报告-ClickHouse Introduction and Deep Dive
中国科学院网络数据重点实验室
9+阅读 · 2019年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
WebAssembly在QQ邮箱中的一次实践
IMWeb前端社区
13+阅读 · 2018年12月19日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
12+阅读 · 2018年6月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员