Reliability in Neural Networks (NNs) is crucial in safety-critical applications like healthcare, and uncertainty estimation is a widely researched method to highlight the confidence of NNs in deployment. In this work, we propose an uncertainty-aware boosting technique for multi-modal ensembling to predict Alzheimer's Dementia Severity. The propagation of uncertainty across acoustic, cognitive, and linguistic features produces an ensemble system robust to heteroscedasticity in the data. Weighing the different modalities based on the uncertainty estimates, we experiment on the benchmark ADReSS dataset, a subject-independent and balanced dataset, to show that our method outperforms the state-of-the-art methods while also reducing the overall entropy of the system. This work aims to encourage fair and aware models. The source code is available at https://github.com/wazeerzulfikar/alzheimers-dementia
翻译:神经网络(NNs)的可靠性在医疗保健等安全关键应用中至关重要,不确定性估计是一种广泛研究的方法,以突出NN对部署的信心。在这项工作中,我们建议一种多模式组合的不确定性增强技术,以预测阿尔茨海默氏痴呆症的发作。在声学、认知和语言特征之间传播不确定性产生一个共同系统,以坚固数据中的异性性。在根据不确定性估计的不同模式下,我们试验了ADRESS基准数据集,这是一个依赖主题和平衡的数据集,以显示我们的方法超过了最先进的方法,同时也减少了系统的总体孔状。这项工作旨在鼓励公平和有意识的模式。源代码见https://github.com/wazeerzulfikar/alzheimers-dementia。