Existing correspondence datasets for two-dimensional (2D) cartoon suffer from simple frame composition and monotonic movements, making them insufficient to simulate real animations. In this work, we present a new 2D animation visual correspondence dataset, AnimeRun, by converting open source three-dimensional (3D) movies to full scenes in 2D style, including simultaneous moving background and interactions of multiple subjects. Our analyses show that the proposed dataset not only resembles real anime more in image composition, but also possesses richer and more complex motion patterns compared to existing datasets. With this dataset, we establish a comprehensive benchmark by evaluating several existing optical flow and segment matching methods, and analyze shortcomings of these methods on animation data. Data, code and other supplementary materials are available at https://lisiyao21.github.io/projects/AnimeRun.
翻译:二维(2D)漫画现有对应数据集存在简单的框架构成和单声道运动,不足以模拟真实动画。在这项工作中,我们展示了一个新的 2D 动画视觉对应数据集,即 AnimeRun, 将开放源三维(3D)电影转换成2D式的全场,包括同时移动背景和多个主题的互动。我们的分析表明,提议的数据集不仅更像图像构成中的真实动脉,而且拥有比现有数据集更丰富、更复杂的运动模式。有了这个数据集,我们通过评估几种现有的光学流和部分匹配方法,并分析这些方法在动画数据上的缺点,建立了一个全面基准。数据、代码和其他补充材料可在 https://lisiyao21.github.io/project/AnimeRun查阅。