Correlated time series (CTS) forecasting plays an essential role in many cyber-physical systems, where multiple sensors emit time series that capture interconnected processes. Solutions based on deep learning that deliver state-of-the-art CTS forecasting performance employ a variety of spatio-temporal (ST) blocks that are able to model temporal dependencies and spatial correlations among time series. However, two challenges remain. First, ST-blocks are designed manually, which is time consuming and costly. Second, existing forecasting models simply stack the same ST-blocks multiple times, which limits the model potential. To address these challenges, we propose AutoCTS that is able to automatically identify highly competitive ST-blocks as well as forecasting models with heterogeneous ST-blocks connected using diverse topologies, as opposed to the same ST-blocks connected using simple stacking. Specifically, we design both a micro and a macro search space to model possible architectures of ST-blocks and the connections among heterogeneous ST-blocks, and we provide a search strategy that is able to jointly explore the search spaces to identify optimal forecasting models. Extensive experiments on eight commonly used CTS forecasting benchmark datasets justify our design choices and demonstrate that AutoCTS is capable of automatically discovering forecasting models that outperform state-of-the-art human-designed models. This is an extended version of ``AutoCTS: Automated Correlated Time Series Forecasting'', to appear in PVLDB 2022.


翻译:相关时间序列( CTS) 预报在许多网络物理系统中起着关键作用,因为多传感器会释放时间序列,从而捕捉到相互关联的过程。基于能提供最先进的 CTS 预报性能的深层次学习的解决方案采用各种能够模拟时间序列间时间依赖和空间相关性的时空(ST)区块。然而,还存在两个挑战。首先,ST区块是手工设计的,耗时且成本高昂。第二,现有的预测模型只是堆叠相同的ST-22 自动叠叠叠多次,限制了模型的潜力。为了应对这些挑战,我们建议AutoCTS,它能够自动识别具有高度竞争力的ST-区块以及使用不同表层连接的混合ST-时空(ST)区块的预测模型。具体地说,我们设计了一个微型和宏观搜索空间,以模拟可能的ST-区块结构以及混杂ST-22 区块之间的联系。我们提出一个搜索战略,能够联合探索搜索空间,以确定最佳的DB模式。为了应对这些挑战,我们建议AutoCTS 的大规模实验是在8个通用的STS 预测性C 常规数据序列中展示了我们的C 的A- atravelissionalstilstisal Steval Stevilal Stal Streal 。

1
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
16+阅读 · 2021年5月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员