Probabilistic time-series forecasting enables reliable decision making across many domains. Most forecasting problems have diverse sources of data containing multiple modalities and structures. Leveraging information as well as uncertainty from these data sources for well-calibrated and accurate forecasts is an important challenging problem. Most previous work on multi-modal learning and forecasting simply aggregate intermediate representations from each data view by simple methods of summation or concatenation and do not explicitly model uncertainty for each data-view. We propose a general probabilistic multi-view forecasting framework CAMul, that can learn representations and uncertainty from diverse data sources. It integrates the knowledge and uncertainty from each data view in a dynamic context-specific manner assigning more importance to useful views to model a well-calibrated forecast distribution. We use CAMul for multiple domains with varied sources and modalities and show that CAMul outperforms other state-of-art probabilistic forecasting models by over 25\% in accuracy and calibration.
翻译:多数预测问题具有包含多种模式和结构的不同数据来源。利用来自这些数据来源的信息和不确定性来进行精确和精确的预测,是一个具有重要挑战性的问题。以往关于多模式学习和预测的大部分工作只是通过简单的比较或合并方法从每个数据视图中汇总中间表示,没有为每个数据视图明确建模不确定性。我们提议了一个通用的多视角多视角预测框架CAMul,可以学习不同数据来源的表述和不确定性。它以动态的、针对具体环境的方式将每个数据来源的知识与不确定性结合起来,更加重视有用的观点,以构建一个精确和校准的预测分布模式。我们使用CAMul用于不同来源和模式的多个领域,并表明CAMul在精确和校准方面比其他最先进的预测模型高出25 ⁇ 。