Tagged magnetic resonance imaging (MRI) is a widely used imaging technique for measuring tissue deformation in moving organs. Due to tagged MRI's intrinsic low anatomical resolution, another matching set of cine MRI with higher resolution is sometimes acquired in the same scanning session to facilitate tissue segmentation, thus adding extra time and cost. To mitigate this, in this work, we propose a novel dual-cycle constrained bijective VAE-GAN approach to carry out tagged-to-cine MR image synthesis. Our method is based on a variational autoencoder backbone with cycle reconstruction constrained adversarial training to yield accurate and realistic cine MR images given tagged MR images. Our framework has been trained, validated, and tested using 1,768, 416, and 1,560 subject-independent paired slices of tagged and cine MRI from twenty healthy subjects, respectively, demonstrating superior performance over the comparison methods. Our method can potentially be used to reduce the extra acquisition time and cost, while maintaining the same workflow for further motion analyses.
翻译:拖网磁共振成像(MRI)是测量移动器官组织畸形的一种广泛使用的成像技术。由于标记磁共振的内在低解剖分辨率,在同一扫描过程中有时会获得另一组相匹配的cine MRI与高分辨率,以便于组织分解,从而增加额外时间和费用。为了减轻这一影响,我们在这项工作中提出了一种新的双向双向限制的VAE-GAN双向方法,以进行标记到cine MR图像合成。我们的方法基于变式自动编码主干柱,循环重建限制了对抗性训练,以产生准确和现实的cine MR图像。我们的框架已经分别用1,768、416和1,560个由20个健康学科组成的、有标记和cine MRI单项独立的双切片进行了培训、验证和测试,表明比比较方法的性能优。我们的方法有可能用来减少额外获取时间和费用,同时保持进一步动作分析的工作流程。