We introduce a family of pairwise stochastic gradient estimators for gradients of expectations, which are related to the log-derivative trick, but involve pairwise interactions between samples. The simplest example of our new estimator, dubbed the fundamental trick estimator, is shown to arise from either a) introducing and approximating an integral representation based on the fundamental theorem of calculus, or b) applying the reparameterisation trick to an implicit parameterisation under infinitesimal perturbation of the parameters. From the former perspective we generalise to a reproducing kernel Hilbert space representation, giving rise to a locality parameter in the pairwise interactions mentioned above, yielding our representer trick estimator. The resulting estimators are unbiased and shown to offer an independent component of useful information in comparison with the log-derivative estimator. We provide a further novel theoretical analysis which further characterises the variance reduction afforded by the new techniques. Promising analytical and numerical examples confirm the theory and intuitions behind the new estimators.


翻译:我们引入了一种对称的梯度梯度测算器, 这些测算器与测算器的测算器相关, 但它与测算器相关, 但也涉及样本之间的对称互动。 我们的新测算器的最简单例子, 称为基本测算仪, 显示其产生的原因是:(a) 引入和接近基于微积分基本原理的综合代表, 或者(b) 将重新校准技巧应用到参数的无限微度扰动下隐含的参数化。 从以前的角度看, 我们把范围概括到生成一个再生的内核Hilbert空间代表器, 从而在上文提及的对称互动中产生一个地点参数, 产生我们的辨测算器测算器。 由此得出的测算器是公正的, 并展示出一个独立的有用信息组成部分, 与测算器的测算器相比。 我们提供了进一步的新的新理论分析, 进一步描述新技术所带来的差异减少的特点。 预测的分析和数字示例证实了新测算器背后的理论和直觉。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Fast R-CNN
数据挖掘入门与实战
3+阅读 · 2018年4月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Fast R-CNN
数据挖掘入门与实战
3+阅读 · 2018年4月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员