Spatio-temporal action detection is an important and challenging problem in video understanding. The existing action detection benchmarks are limited in aspects of small numbers of instances in a trimmed video or low-level atomic actions. This paper aims to present a new multi-person dataset of spatio-temporal localized sports actions, coined as MultiSports. We first analyze the important ingredients of constructing a realistic and challenging dataset for spatio-temporal action detection by proposing three criteria: (1) multi-person scenes and motion dependent identification, (2) with well-defined boundaries, (3) relatively fine-grained classes of high complexity. Based on these guide-lines, we build the dataset of MultiSports v1.0 by selecting 4 sports classes, collecting 3200 video clips, and annotating 37701 action instances with 902k bounding boxes. Our datasets are characterized with important properties of high diversity, dense annotation, and high quality. Our Multi-Sports, with its realistic setting and detailed annotations, exposes the intrinsic challenges of spatio-temporal action detection. To benchmark this, we adapt several baseline methods to our dataset and give an in-depth analysis on the action detection results in our dataset. We hope our MultiSports can serve as a standard benchmark for spatio-temporal action detection in the future. Our dataset website is at https://deeperaction.github.io/multisports/.
翻译:Spatio-时间行动探测是视频理解中一个重要和具有挑战性的问题。 现有的行动探测基准在数量较少的微小视频或低水平原子行动中有限。 本文旨在展示一个新的多人数据组, 包括以多功能运动形式创建的时空局部运动行动, 我们首先分析为时空行动探测构建一个现实和具有挑战性的数据集的重要要素, 提出三个标准:(1) 多人场景和运动依附识别, (2) 有明确界定的界限, (3) 相对细微的高度复杂类别。 基于这些指南线, 我们通过选择4个体育课, 收集3200个视频剪辑, 以及用902公里边框标示3701个动作。 我们的数据集具有高多样性、 密集的注解和高品质等重要特性。 我们的多功能运动及其详细说明, 暴露了口腔运动行动探测的内在挑战。 我们为多功能运动检测网站设定了我们的数据基准分析结果, 我们在多功能测试网站中为我们的标准数据定位/ 。