Automatic image cropping techniques are commonly used to enhance the aesthetic quality of an image; they do it by detecting the most beautiful or the most salient parts of the image and removing the unwanted content to have a smaller image that is more visually pleasing. In this thesis, I introduce an additional dimension to the problem of cropping, semantics. I argue that image cropping can also enhance the image's relevancy for a given entity by using the semantic information contained in the image. I call this problem, Semantic Image Cropping. To support my argument, I provide a new dataset containing 100 images with at least two different entities per image and four ground truth croppings collected using Amazon Mechanical Turk. I use this dataset to show that state-of-the-art cropping algorithms that only take into account aesthetics do not perform well in the problem of semantic image cropping. Additionally, I provide a new deep learning system that takes not just aesthetics but also semantics into account to generate image croppings, and I evaluate its performance using my new semantic cropping dataset, showing that using the semantic information of an image can help to produce better croppings.
翻译:自动图像裁剪技术通常用来提高图像的审美质量; 通常使用自动图像裁剪技术来提高图像的审美质量; 它们通过探测图像中最美或最突出的部分来做到这一点, 并删除不需要的内容, 使图像更小, 更能看得上视觉。 在此论文中, 我引入了裁剪和语义问题的额外维度。 我认为, 图像裁剪也可以通过使用图像中包含的语义信息来提高图像对特定实体的适切性。 我称之为“ 语义图像裁剪裁剪” 。 为了支持我的论点, 我提供了一个包含100张图像的新数据集, 其中至少包含每个图像中两个不同的实体, 以及用亚马逊机械土耳其语收集的四种地面真相裁剪。 我使用该数据集来显示仅考虑审裁剪裁法的状态算算法在语义图像裁剪裁过程中效果效果不佳。 此外, 我提供了一个新的深层次的学习系统, 它不仅考虑到美观, 而且还考虑到生成图像裁剪裁裁裁剪裁, 我用我的新语数据集来评估其性数据集的性, 能够制作更好的图像。