A common practice in unsupervised representation learning is to use labeled data to evaluate the quality of the learned representations. This supervised evaluation is then used to guide critical aspects of the training process such as selecting the data augmentation policy. However, guiding an unsupervised training process through supervised evaluations is not possible for real-world data that does not actually contain labels (which may be the case, for example, in privacy sensitive fields such as medical imaging). Therefore, in this work we show that evaluating the learned representations with a self-supervised image rotation task is highly correlated with a standard set of supervised evaluations (rank correlation > 0.94). We establish this correlation across hundreds of augmentation policies, training settings, and network architectures and provide an algorithm (SelfAugment) to automatically and efficiently select augmentation policies without using supervised evaluations. Despite not using any labeled data, the learned augmentation policies perform comparably with augmentation policies that were determined using exhaustive supervised evaluations.


翻译:未经监督的代表性学习的常见做法是使用标签数据来评价所了解的表述质量;然后,这种监督评价被用来指导培训过程的关键方面,例如选择数据增强政策;然而,对于实际上不包含标签的真实世界数据来说,不可能通过监督评价来指导未经监督的培训过程(例如,在诸如医学成像等隐私敏感领域,这可能是这样的情况);因此,在这项工作中,我们表明,以自我监督的图像旋转任务来评价所了解的表述与一套标准的监督评价(排序相关度 > 0.94)高度相关,我们建立了数百项强化政策、培训设置和网络结构之间的这种相关关系,并提供一种算法(自我增强),以便在不使用监督评价的情况下自动和有效地选择增强政策。尽管没有使用任何标签数据,但所学的增强政策与使用彻底监督的评价确定的增强政策具有可比性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
38+阅读 · 2020年12月2日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员