A decent number of lower bounds for non-elitist population-based evolutionary algorithms has been shown by now. Most of them are technically demanding due to the (hard to avoid) use of negative drift theorems -- general results which translate an expected progress away from the target into a high hitting time. We propose a simple negative drift theorem for multiplicative drift scenarios and show that it simplifies many existing results. We discuss in more detail Lehre's (PPSN 2010) \emph{negative drift in populations} method, one of the most general tools to prove lower bounds on the runtime of non-elitist evolutionary algorithms. Together with other arguments, we obtain an alternative and simpler proof, which also strengthens and simplifies this method. In particular, now only three of the five technical conditions of the previous result have to be verified. The lower bounds we obtain are explicit instead of only asymptotic. This allows to compute concrete lower bounds for concrete algorithms, but also enables us to show that super-polynomial runtimes appear already when the reproduction rate is only a $(1 - \omega(n^{-1/2}))$ factor below the threshold. As one particular result, we apply this method, for the first time, to an algorithm using fitness-proportionate selection.
翻译:现在已经展示了非扩张性人口进化算法的更下限。 大部分这些算法在技术上要求较高, 因为( 很难避免)使用负流进化算法。 通常的结果是, 将预期的进展从目标转换为高打击时间。 我们提出一个简单的负流流理论, 用于多复制性漂流假设, 并显示它简化了许多现有结果。 我们更详细地讨论Lehre 的( PPSN 2010)\ emph{negive 流到人口 } 方法, 这是最普通的工具之一, 证明非扩张性进化算法运行时的下限。 与其他参数一起, 我们获得了一个替代的更简单的证据, 并且简单化了这个方法。 特别是, 现在, 先前结果的五个技术条件中只有三个需要校验。 我们得到的下限是明确的, 而不是单纯的。 这样可以比较具体算算法的更下限, 但也使我们能够显示, 在非扩张进化进化进化算算算法的运行时间中, 已经出现了超极流- 美元运行时间, 当复制率为1 比例时, As\\\\\ a a a a ex ex a a a ex res a a res a a expetique a res a a le a le a le a le a a le a le a ex a ex a ex a ex a res a ex a leg ex a a legleglegal a a a lex) a a a a legal a a ex a a a a a a a legleg) a leg a a a a a a leg a a a a a a a a a a a a a a a a leg a a a a a a a a a a a leg p p p p p p legal a leg a legal) a legal a exal a legal a grame) a ex.