Non-significant randomized control trials can hide subgroups of good responders to experimental drugs, thus hindering subsequent development. Identifying such heterogeneous treatment effects is key for precision medicine and many post-hoc analysis methods have been developed for that purpose. While several benchmarks have been carried out to identify the strengths and weaknesses of these methods, notably for binary and continuous endpoints, similar systematic empirical evaluation of subgroup analysis for time-to-event endpoints are lacking. This work aims to fill this gap by evaluating several subgroup analysis algorithms in the context of time-to-event outcomes, by means of three different research questions: Is there heterogeneity? What are the biomarkers responsible for such heterogeneity? Who are the good responders to treatment? In this context, we propose a new synthetic and semi-synthetic data generation process that allows one to explore a wide range of heterogeneity scenarios with precise control on the level of heterogeneity. We provide an open source Python package, available on Github, containing our generation process and our comprehensive benchmark framework. We hope this package will be useful to the research community for future investigations of heterogeneity of treatment effects and subgroup analysis methods benchmarking.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年2月28日
Arxiv
0+阅读 · 2024年2月28日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员