In this paper, we study the Wilf-type equivalence relations among multiset permutations. We identify all multiset equivalences among pairs of patterns consisting of a pattern of length three and another pattern of length at most four. To establish our results, we make use of a variety of techniques, including Ferrers-equivalence arguments, sorting by minimal/maximal letters, analysis of active sites and direct bijections. In several cases, our arguments may be extended to prove multiset equivalences for infinite families of pattern pairs. Our results apply equally well to the Wilf-type classification of compositions, and as a consequence, we obtain a complete description of the Wilf-equivalence classes for pairs of patterns of type (3,3) and (3,4) on compositions, with the possible exception of two classes of type (3,4).
翻译:在本文中,我们研究了多种变异之间的威尔夫型等同关系,我们确定了由长度三和另一种长度四组成的模式对等体的所有多重等同关系。为了确定我们的结果,我们使用了多种技术,包括Ferres等效参数,按最小/最大字母分类,分析活动地点和直接两截分。在几种情况下,我们的论点可以扩大到证明模式对等的无限家族的多重等同关系。我们的结果同样适用于威尔夫型的构成分类,因此,我们获得了对类型(3,3)和(3,4)两种模式组合的威尔夫等同类的完整描述,可能存在两种类型(3,4)的例外。