The light we receive from distant astrophysical objects carries information about their origins and the physical mechanisms that power them. The study of these signals, however, is complicated by the fact that observations are often a mixture of the light emitted by multiple localized sources situated in a spatially-varying background. A general algorithm to achieve robust and accurate source identification in this case remains an open question in astrophysics. This paper focuses on high-energy light (such as X-rays and gamma-rays), for which observatories can detect individual photons (quanta of light), measuring their incoming direction, arrival time, and energy. Our proposed Bayesian methodology uses both the spatial and energy information to identify point sources, that is, separate them from the spatially-varying background, to estimate their number, and to compute the posterior probabilities that each photon originated from each identified source. This is accomplished via a Dirichlet process mixture while the background is simultaneously reconstructed via a flexible Bayesian nonparametric model based on B-splines. Our proposed method is validated with a suite of simulation studies and illustrated with an application to a complex region of the sky observed by the \emph{Fermi} Gamma-ray Space Telescope.


翻译:我们从远方天体物理天体物体收到的光线含有其来源和动力物理机制的信息。然而,由于观测往往是空间变化背景中多个局部来源发出的光的混合体,因此对这些信号的研究变得复杂。在这种情况下,实现可靠和准确来源识别的一般算法仍然是天体物理学的一个未决问题。本文侧重于高能光(如X射线和伽马射线),观测站可为此探测到单个光(光度),测量其进入方向、到达时间和能量。我们提议的巴伊西亚方法使用空间和能源信息来查明点源,即将其与空间变化背景分开,估计其数量,并计算每个光从每个确定来源产生的远光的概率。通过Drichlet 混合过程完成这项工作,同时通过基于B-splines的灵活B-Syesian非对称模型来重建背景。我们拟议的方法经过模拟研究的一套模拟研究加以验证,并用G-F-TLA系统对一个复杂的天空区域进行演示。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
机器学习速查手册,135页pdf
专知会员服务
341+阅读 · 2020年3月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员