Phase retrieval in dynamical sampling is a novel research direction, where an unknown signal has to be recovered from the phaseless measurements with respect to a dynamical frame, i.e. a sequence of sampling vectors constructed by the repeated action of an operator. The loss of the phase here turns the well-posed dynamical sampling into a severe ill-posed inverse problem. In the existing literature, the involved operator is usually completely known. In this paper, we combine phase retrieval in dynamical sampling with the identification of the system. For instance, if the dynamical frame is based on a repeated convolution, then we want to recover the unknown convolution kernel in advance. Using Prony's method, we establish several recovery guarantees for signal and system, whose proofs are constructive and yield analytic recovery methods. The required assumptions are satisfied by almost all signals, operators, and sampling vectors. Moreover, these guarantees not only hold for the finite-dimensional setting but also carry over to infinite-dimensional spaces. Studying the sensitivity of the analytic recovery procedures, we also establish error bounds for the applied approximate Prony method with respect to complex exponential sums.
翻译:动态取样的阶段检索是一个新颖的研究方向,在这个方向上,必须从动态框架的无阶段测量中恢复一个未知信号,即由操作者反复行动所构造的一组采样矢量,即由操作者反复行动所构造的采样矢量序列。 阶段的丧失使精心储存的动态采样变成严重的反向问题。 在现有的文献中, 所涉操作者通常完全为人所知。 在本文中, 我们将动态采样中的阶段检索与系统识别结合起来。 例如, 如果动态框架基于反复的熔化, 那么我们想提前恢复未知的熔化内核。 使用Prony的方法, 我们为信号和系统建立了若干恢复保证, 其证据具有建设性, 并产生分析性复原方法。 几乎所有信号、 操作者和采样矢量都满足了所需的假设。 此外, 这些保证不仅保持有限维度的设置, 而且还将覆盖到无限的空间。 研究分析恢复程序的敏感性, 我们还在复杂的指数方面为应用的近似的 Prony 方法设定了误界。