In this paper, we propose a finite-volume scheme for aggregation-diffusion equations based on a Scharfetter--Gummel approximation of the quadratic, nonlocal flux term. This scheme is analyzed concerning well-posedness and convergence towards solutions to the continuous problem. Also, it is proven that the numerical scheme has several structure-preserving features. More specifically, it is shown that the discrete solutions satisfy a free-energy dissipation relation analogous to the continuous model. Consequently, the numerical solutions converge in the large time limit to stationary solutions, for which we provide a thermodynamic characterization. Numerical experiments complement the study.


翻译:在本文中,我们根据非本地通量术语的Scharfetter-Gummel近似值,提出一个总合-扩散方程式的有限量计划。这个计划是根据对持续问题解决办法的妥善准备和趋同性来分析的。此外,这个数字计划有几种结构保留特征。更具体地说,已经表明离散解决方案满足了类似于连续模型的免费能源消散关系。因此,数字解决方案在大量时限内与固定解决方案相汇合,对此我们提供了热力学特征。数字实验是对研究的补充。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
7+阅读 · 2018年4月18日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月28日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2018年4月18日
Top
微信扫码咨询专知VIP会员