This paper discusses algorithms for phase retrieval where the measurements follow independent Poisson distributions, using maximum likelihood (ML) estimation. To optimize the log-likelihood for the Poisson phase retrieval model, we developed and compared several algorithms including Wirtinger flow (WF), Gerchberg Saxton (GS), majorize minimize (MM) and alternating direction method of multipliers (ADMM). Simulation results using random Gaussian sensing matrix and discrete Fourier transform (DFT) matrix under Poisson measurement noise demonstrated that algorithms based on the Poisson model consistently produced higher quality reconstructions than algorithms (WF, GS) derived from Gaussian noise models when applied to such data. Moreover, the reconstruction quality can be further improved by adding regularizers that exploit assumed properties of the latent signal/image, such as sparsity of finite differences (anisotropic total variation) or of the coefficients of a discrete wavelet transform. The proposed regularized MM algorithm decreased NRMSE much faster than the regularized ADMM algorithm. We also proposed a variation of the WF approach that uses a step size based on the Fisher information and converges faster than previous WF approaches.


翻译:本文讨论利用最大可能性(ML)估计测算法进行独立Poisson测量分布的阶段检索的算法。为了优化Poisson 级测算模型的日志相似性,我们开发并比较了几种算法,包括Wirtinger流(WF)、Gerchberg Saxton(GS)、主要最小化(MM)和乘数交替方向法(ADMM);使用随机高斯感应矩阵和Poisson测量噪音下离散的Fourier变异(DFT)矩阵的模拟结果显示,基于Poisson模型的算法在应用这些数据时持续产生比Gaussian噪声模型(WF、GS)的质量更高质量的重建。此外,如果增加一些利用潜在信号/图像的假定特性(如有限差异(氮总变异)或离散波变系数的正规化规范化规范化者,则比常规的ADMMX算法要快得多。我们还提议对FFFSB方法加以修改,该方法采用比以往渔业信息趋同速度的方法。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
82+阅读 · 2020年8月13日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月29日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
82+阅读 · 2020年8月13日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员