Motivated by a study of United Nations voting behaviors, we introduce a regression model for a series of networks that are correlated over time. Our model is a dynamic extension of the additive and multiplicative effects network model (AMEN) of Hoff (2019). In addition to incorporating a temporal structure, the model accommodates two types of missing data thus allows the size of the network to vary over time. We demonstrate via simulations the necessity of various components of the model. We apply the model to the United Nations General Assembly voting data from 1983 to 2014 (Voeten (2013)) to answer interesting research questions regarding international voting behaviors. In addition to finding important factors that could explain the voting behaviors, the model-estimated additive effects, multiplicative effects, and their movements reveal meaningful foreign policy positions and alliances of various countries.
翻译:受联合国投票行为研究的启示,我们引入了一种针对一系列相关网络的回归模型。我们的模型是Hoff(2019)的加法和乘法效应网络模型(AMEN)的动态扩展。除了包括时间结构外,该模型还容纳了两种缺失数据类型,因此允许网络大小随时间变化。我们通过模拟证明了模型各组成部分的必要性。我们应用该模型于1983年至2014年(Voeten(2013))的联合国大会投票数据,以回答有关国际投票行为的有趣研究问题。除了发现可以解释投票行为的重要因素外,模型估计的加法效应,乘法效应及其移动也揭示了各种国家的有意义外交政策立场和联盟。