While using invariant and equivariant maps, it is possible to apply deep learning to a range of primitive data structures, a formalism for dealing with hierarchy is lacking. This is a significant issue because many practical structures are hierarchies of simple building blocks; some examples include sequences of sets, graphs of graphs, or multiresolution images. Observing that the symmetry of a hierarchical structure is the "wreath product" of symmetries of the building blocks, we express the equivariant map for the hierarchy using an intuitive combination of the equivariant linear layers of the building blocks. More generally, we show that any equivariant map for the hierarchy has this form. To demonstrate the effectiveness of this approach to model design, we consider its application in the semantic segmentation of point-cloud data. By voxelizing the point cloud, we impose a hierarchy of translation and permutation symmetries on the data and report state-of-the-art on Semantic3D, S3DIS, and vKITTI, that include some of the largest real-world point-cloud benchmarks.
翻译:在使用千变万化和等分图的同时,有可能对一系列原始数据结构进行深层次学习,但缺乏处理等级体系的正规主义。这是一个重要问题,因为许多实用结构是简单的建筑块的等级结构;一些例子包括各组的序列、图表的图表或多分辨率图像。观察一个等级结构的对称性是各构件对称的“扭曲产物 ”, 我们用各构件的等式线性层的直观组合来表达等级体系的等式图。 更一般地说, 我们显示,任何等级体系的等式地图都有这种形式。 为了展示这种模式设计方法的有效性,我们考虑将其应用于点云层数据的语系分割。 通过对点云进行反毒, 我们对数据进行翻译和定型对称性分级, 并报告Smantic3D、S3DDDDDDDDD和VKITTI的状态, 其中包括一些最大的真实世界临界基准。