Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain better denoising performance, which may cause training difficulty. In this paper, we propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB). DCB uses a dynamic convolution to dynamically adjust parameters of several convolutions for making a tradeoff between denoising performance and computational costs. WEB uses a combination of signal processing technique (i.e., wavelet transformation) and discriminative learning to suppress noise for recovering more detailed information in image denoising. To further remove redundant features, RB is used to refine obtained features for improving denoising effects and reconstruct clean images via improved residual dense architectures. Experimental results show that the proposed MWDCNN outperforms some popular denoising methods in terms of quantitative and qualitative analysis. Codes are available at https://github.com/hellloxiaotian/MWDCNN.
翻译:深层神经神经网络(CNNNs)用于通过自动开采准确的结构信息进行图像分解;然而,现有有线电视新闻网大多数依靠扩大设计网络的深度,以获得更好的分解性性能,这可能造成培训困难;在本文件中,我们提议通过三个阶段,即动态的相变区块(DCB)、两个级联波流变换和增强区块(WEBs)和剩余区块(RB),使图像分解;DCB利用动态变迁动态来动态调整若干变迁的参数,以便在分解性能和计算成本之间实现平衡。WEB使用信号处理技术(即波子变换)和歧视性学习相结合,以抑制噪音,恢复图像分解性能的更详细信息。为了进一步消除冗余特征,正在使用RB来改进已获得的特性,通过改进残余密度结构来改善分解性效果和重建干净图像。实验结果表明,拟议的MWCDNN在定量和定性分析方面超越了一些流行的解性方法。