Perceiving obstacles and avoiding collisions is fundamental to the safe operation of a robot system, particularly when the robot must operate in highly dynamic human environments. Proximity detection using on-robot sensors can be used to avoid or mitigate impending collisions. However, existing proximity sensing methods are orientation and placement dependent, resulting in blind spots even with large numbers of sensors. In this paper, we introduce the phenomenon of the Leaky Surface Wave (LSW), a novel sensing modality, and present AuraSense, a proximity detection system using the LSW. AuraSense is the first system to realize no-dead-spot proximity sensing for robot arms. It requires only a single pair of piezoelectric transducers, and can easily be applied to off-the-shelf robots with minimal modifications. We further introduce a set of signal processing techniques and a lightweight neural network to address the unique challenges in using the LSW for proximity sensing. Finally, we demonstrate a prototype system consisting of a single piezoelectric element pair on a robot manipulator, which validates our design. We conducted several micro benchmark experiments and performed more than 2000 on-robot proximity detection trials with various potential robot arm materials, colliding objects, approach patterns, and robot movement patterns. AuraSense achieves 100% and 95.3% true positive proximity detection rates when the arm approaches static and mobile obstacles respectively, with a true negative rate over 99%, showing the real-world viability of this system.


翻译:发现障碍和避免碰撞对于机器人系统的安全运行至关重要,特别是当机器人必须在高度动态的人类环境中运行时。使用机器人传感器的近距离探测可以用来避免或减轻即将发生的碰撞。但是,现有的近距离遥感方法取决于方向和位置,即使传感器数量众多,也会导致盲点。在本文件中,我们引入了使用新式遥感模式的激光表面波现象,并展示了使用LSW的近距离探测系统AuraSense。AuraSense是第一个实现机器人武器无死点近距离探测的系统。它只需要单对一对派生电传感器就可以用来避免或减轻即将发生的碰撞。但是,现有的近距离遥感方法取决于方向和位置,即使传感器数量众多,也会导致盲点。我们进一步引入了一套信号处理技术和轻度神经网络,以应对在使用LSWM进行近距离探测方面的独特挑战。最后,我们展示了由机器人操纵器上单一的派生电元素组合构成的原型系统,这验证了我们的设计。我们进行了一些微观基准实验,并且进行了比2000年多的派电离电转换器转换器转换器转换器操作系统,并分别展示了100%的精确的近距离的近距离探测速度,并试验,并测试了100度的机器人探测速度的机械式机器人探测速度,并试验。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
10+阅读 · 2021年8月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
Arxiv
0+阅读 · 2021年10月6日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关资讯
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
Top
微信扫码咨询专知VIP会员