We introduce semantic form mid-tuning, an approach for transferring semantic knowledge from semantic meaning representations into transformer-based language encoders. In mid-tuning, we learn to align the text of general sentences -- not tied to any particular inference task -- and structured semantic representations of those sentences. Our approach does not require gold annotated semantic representations. Instead, it makes use of automatically generated semantic representations, such as from off-the-shelf PropBank and FrameNet semantic parsers. We show that this alignment can be learned implicitly via classification or directly via triplet loss. Our method yields language encoders that demonstrate improved predictive performance across inference, reading comprehension, textual similarity, and other semantic tasks drawn from the GLUE, SuperGLUE, and SentEval benchmarks. We evaluate our approach on three popular baseline models, where our experimental results and analysis concludes that current pre-trained language models can further benefit from structured semantic frames with the proposed mid-tuning method, as they inject additional task-agnostic knowledge to the encoder, improving the generated embeddings as well as the linguistic properties of the given model, as evident from improvements on a popular sentence embedding toolkit and a variety of probing tasks.
翻译:我们引入了语义中调, 这是一种将语义知识从语义表达方式向基于变压器的语言编码器转移的方法。 在中调中, 我们学会了将一般句子的案文 -- -- 与任何特定的推论任务没有联系 -- -- 和这些句子的结构化语义表达方式加以调整。 我们的方法不需要黄金的附加语义表达方式。 相反, 它使用自动生成的语义表达方式, 例如从现成的PropBank 和 FramtNet 语义解析器中生成的语义表达方式。 我们显示, 通过分类或直接通过三重损失, 可以隐含地学习这种调和语义知识。 我们的方法生成语言解译器, 显示在各种推论中, 阅读理解、 文本相似性相似性以及从GLUE、 SuperGLUE 和 SentEval 基准中提取的其他语义表达式表达式表达式表达方式表现的预测性表现得到改善。 我们评估了我们在三种流行基线模型模型上的做法, 我们的实验结果和分析结论是, 目前经过预先训练的语言模式的语系模型模型模型和语言模型分析模型分析模型可以进一步获益于拟议的中调方法,,, 将新的语言模型和版本化的版本化工具的模型的嵌入了,, 将语言变式的模型, 嵌入了成成成的版本化, 。