In the minimum $k$-cut problem, we want to find the minimum number of edges whose deletion breaks the input graph into at least $k$ connected components. The classic algorithm of Karger and Stein runs in $\tilde O(n^{2k-2})$ time, and recent, exciting developments have improved the running time to $O(n^k)$. For general, weighted graphs, this is tight assuming popular hardness conjectures. In this work, we show that perhaps surprisingly, $O(n^k)$ is not the right answer for simple, unweighted graphs. We design an algorithm that runs in time $O(n^{(1-\epsilon)k})$ where $\epsilon>0$ is an absolute constant, breaking the natural $n^k$ barrier. This establishes a separation of the two problems in the unweighted and weighted cases.
翻译:在最小的 $k$ 问题中, 我们想要找到最小的边缘数量, 这些边缘的删除会将输入图分解成至少 $k$ 连接的组件。 典型的Karger 和 Stein 的算法以$\ tilde O (n ⁇ 2k-2}) 时间和最近令人兴奋的发展将运行时间提高到$O (n ⁇ k) 。 对于一般而言, 加权的图表, 假设流行的硬性猜想, 这一点比较紧。 在这项工作中, 我们发现, 可能令人惊讶的是, $O (n ⁇ ) 并不是简单、 未加权的图形的正确答案。 我们设计的算法可以用$O (n ⁇ ) (1\\\\\\\ epsilon) $ 来运行, 美元是一个绝对的常数, 打破天然的 $näk$ 屏障。 这在未加权和加权的案例中可以分解两个问题 。