In the minimum $k$-cut problem, we want to find the minimum number of edges whose deletion breaks the input graph into at least $k$ connected components. The classic algorithm of Karger and Stein runs in $\tilde O(n^{2k-2})$ time, and recent, exciting developments have improved the running time to $O(n^k)$. For general, weighted graphs, this is tight assuming popular hardness conjectures. In this work, we show that perhaps surprisingly, $O(n^k)$ is not the right answer for simple, unweighted graphs. We design an algorithm that runs in time $O(n^{(1-\epsilon)k})$ where $\epsilon>0$ is an absolute constant, breaking the natural $n^k$ barrier. This establishes a separation of the two problems in the unweighted and weighted cases.


翻译:在最小的 $k$ 问题中, 我们想要找到最小的边缘数量, 这些边缘的删除会将输入图分解成至少 $k$ 连接的组件。 典型的Karger 和 Stein 的算法以$\ tilde O (n ⁇ 2k-2}) 时间和最近令人兴奋的发展将运行时间提高到$O (n ⁇ k) 。 对于一般而言, 加权的图表, 假设流行的硬性猜想, 这一点比较紧。 在这项工作中, 我们发现, 可能令人惊讶的是, $O (n ⁇ ) 并不是简单、 未加权的图形的正确答案。 我们设计的算法可以用$O (n ⁇ ) (1\\\\\\\ epsilon) $ 来运行, 美元是一个绝对的常数, 打破天然的 $näk$ 屏障。 这在未加权和加权的案例中可以分解两个问题 。

0
下载
关闭预览

相关内容

【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
专知会员服务
14+阅读 · 2021年5月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员