This paper proposes a novel method for vision-based metric cross-view geolocalization (CVGL) that matches the camera images captured from a ground-based vehicle with an aerial image to determine the vehicle's geo-pose. Since aerial images are globally available at low cost, they represent a potential compromise between two established paradigms of autonomous driving, i.e. using expensive high-definition prior maps or relying entirely on the sensor data captured at runtime. We present an end-to-end differentiable model that uses the ground and aerial images to predict a probability distribution over possible vehicle poses. We combine multiple vehicle datasets with aerial images from orthophoto providers on which we demonstrate the feasibility of our method. Since the ground truth poses are often inaccurate w.r.t. the aerial images, we implement a pseudo-label approach to produce more accurate ground truth poses and make them publicly available. While previous works require training data from the target region to achieve reasonable localization accuracy (i.e. same-area evaluation), our approach overcomes this limitation and outperforms previous results even in the strictly more challenging cross-area case. We improve the previous state-of-the-art by a large margin even without ground or aerial data from the test region, which highlights the model's potential for global-scale application. We further integrate the uncertainty-aware predictions in a tracking framework to determine the vehicle's trajectory over time resulting in a mean position error on KITTI-360 of 0.78m.
翻译:本文提出了一个基于愿景的跨视图地理定位(CVGL)新颖方法,该方法将地面飞行器摄取的摄像图像与空中图像相匹配,以航空图像确定飞行器的地理位置。由于空中图像是全球以低成本提供的,因此在自主驾驶的两个既定范式之间,即使用昂贵的高清晰度前地图,或完全依靠在运行时采集的传感器数据,是一种可能的折叠式模式。我们提出了一个端至端可互换模型,利用地面和空中图像来预测可能的车辆配置的概率分布。我们把多部车辆数据集与Orthophotto供应商的航空图像结合起来,以此展示我们的方法的可行性。由于地面图像的显示往往不准确 w.r.t. 航空图像,因此我们采用一种假标签方法来制作更准确的地面真实图像,并向公众公布这些数据。虽然以前的工作需要目标区域的培训数据来达到合理的本地化准确度(即同一区域评价),但我们的方法克服了这一限制,并超越了以往的结果,甚至在严格具有挑战性的跨区域供应商图像中,我们从一个潜在的轨道上改进了以往的轨道定位,从地面定位,从地面的轨道上,而没有进一步的轨道上,我们从地面的轨道上对地平地平地平基的轨道上进行进一步的测量。