Extracting blood vessels from retinal fundus images plays a decisive role in diagnosing the progression in pertinent diseases. In medical image analysis, vessel extraction is a semantic binary segmentation problem, where blood vasculature needs to be extracted from the background. Here, we present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture. Despite a relatively less number of trainable network parameters, the scaled version of U-net architecture provides better performance compare to other methods in the domain. We validated the proposed method on retinal fundus images from the DRIVE database. A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results. Furthermore, the proposed method is resistant to the central vessel reflex while sensitive to detect blood vessels in the presence of background items viz. exudates, optic disc, and fovea.
翻译:从视网膜基金图象提取血管在诊断有关疾病的进展方面起着决定性作用。在医学图像分析中,船舶提取是一个语义二元分解问题,需要从背景中提取血液血管。在这里,我们展示了一种基于形态预处理的图像增强技术,加上一个规模较大的U-net结构。尽管可培训网络参数相对较少,但规模化的U-net结构提供了更好的性能与域内其他方法的比较。我们验证了Dive数据库中拟议中的视网膜基金图象方法。与域内其他算法相比,在ROC曲线下的区域(>0.9762)和分类精度(>95.47%)方面有显著的改进,从结果中可以明显看出。此外,拟议的方法对中央容器反射力具有抗力,同时敏感地在背景物品(如外壳、光盘和fovea)中探测血管容器。