We study the optimal batch-regret tradeoff for batch linear contextual bandits. For any batch number $M$, number of actions $K$, time horizon $T$, and dimension $d$, we provide an algorithm and prove its regret guarantee, which, due to technical reasons, features a two-phase expression as the time horizon $T$ grows. We also prove a lower bound theorem that surprisingly shows the optimality of our two-phase regret upper bound (up to logarithmic factors) in the \emph{full range} of the problem parameters, therefore establishing the exact batch-regret tradeoff. Compared to the recent work \citep{ruan2020linear} which showed that $M = O(\log \log T)$ batches suffice to achieve the asymptotically minimax-optimal regret without the batch constraints, our algorithm is simpler and easier for practical implementation. Furthermore, our algorithm achieves the optimal regret for all $T \geq d$, while \citep{ruan2020linear} requires that $T$ greater than an unrealistically large polynomial of $d$. Along our analysis, we also prove a new matrix concentration inequality with dependence on their dynamic upper bounds, which, to the best of our knowledge, is the first of its kind in literature and maybe of independent interest.


翻译:我们研究的是分批线性背景土匪的最佳批量- regret交易。 对于任何批量编号为$M$、行动数量为$K美元、时间范围$T$和维度$D$,我们提供算法并证明其遗憾保证,由于技术原因,随着时间范围$T美元的增长,这种算法具有两个阶段的表达方式。我们还证明了一个较低的约束性理论,令人惊讶地显示了我们问题参数中两阶段遗憾上限(达到对数系数)的最佳性。因此,对于任何批量编号为$、行动数量为$K美元、时间范围为$T和维度为$D$D$D$D$,与最近的工作\citep{ruan2020linear}相比,我们提供了一种算法的算法并证明,$M=O(log\log) T)分批量足以在没有批量限制的情况下实现无谓的微小负负数的遗憾,我们的算法更便于实际实施。此外,我们的算法首先对所有美元=cregretal deal ral main (caly) main a grealally hustly hustly exligaltistraltiquen.

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年3月21日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年3月21日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员