This paper investigates the task coordination of multi-robot where each robot has a private individual temporal logic task specification; and also has to jointly satisfy a globally given collaborative temporal logic task specification. To efficiently generate feasible and optimized task execution plans for the robots, we propose a hierarchical multi-robot temporal task planning framework, in which a central server allocates the collaborative tasks to the robots, and then individual robots can independently synthesize their task execution plans in a decentralized manner. Furthermore, we propose an execution plan adjusting mechanism that allows the robots to iteratively modify their execution plans via privacy-preserved inter-agent communication, to improve the expected actual execution performance by reducing waiting time in collaborations for the robots.
翻译:本文调查了多机器人的任务协调情况,每个机器人在其中拥有个人时间逻辑的私人任务规格;并且还必须共同满足全球特定的协作时间逻辑任务规格。 为了高效地为机器人制定可行和优化的任务执行计划,我们提议了一个等级分级的多机器人时间任务规划框架,中央服务器将合作任务分配给机器人,然后单个机器人可以分散地独立合成任务执行计划。 此外,我们提议了一个执行计划调整机制,允许机器人通过保密的机构间通信对实施计划进行迭接修改,通过减少机器人的等待时间来改进预期的实际执行绩效。