We consider over-the-air convex optimization on a d dimensional space where coded gradients are sent over an additive Gaussian noise channel with variance \sigma^2. The codewords satisfy an average power constraint P, resulting in the signal-to-noise ratio (SNR) of P/\sigma^2. We derive bounds for the convergence rates for over-the-air optimization. Our first result is a lower bound for the convergence rate showing that any code must slowdown the convergence rate by a factor of roughly \sqrt{d/log(1 + SNR)}. Next, we consider a popular class of schemes called analog coding, where a linear function of the gradient is sent. We show that a simple scaled transmission analog coding scheme results in a slowdown in convergence rate by a factor of \sqrt{d(1 + 1/SNR)}. This matches the previous lower bound up to constant factors for low SNR, making the scaled transmission scheme optimal at low SNR. However, we show that this slowdown is necessary for any analog coding scheme. In particular, a slowdown in convergence by a factor of \sqrt{d} for analog coding remains even when SNR tends to infinity. Remarkably, we present a simple quantize-and-modulate scheme that uses Amplitude Shift Keying and almost attains the optimal convergence rate at all SNRs.
翻译:我们考虑在一个维度空间上进行超空 convex优化, 编码梯度通过一个有差异的加固高斯噪声频道发送。 2 代码字字满足平均功率限制 P, 导致 P/\ sigma2 的信号对噪比( SNR ) 。 我们为超空优化的汇合率设定了界限。 我们的第一个结果是, 趋同率下限, 显示任何代码都必须以大约\ sqrt{ d/log( 1+ SNR) 的系数来减缓趋同率。 其次, 我们考虑一种称为模拟编码的流行计划类别, 叫做模拟编码, 发送梯度的线性函数。 我们表明, 简单缩放的传输模拟编码计划导致汇合率的减速, 以\ scrrt{ d( 1+ 1/ SNR) 系数为基准值。 这与先前的低调调调和恒定系数相匹配, 使所有递增的传输计划最优化。 然而, 我们表明, 这种减速度对于任何模拟编码计划都是必要的。 微调的递增率的递增率, 当我们使用时, 递增时, 渐渐渐渐渐渐渐渐渐渐渐减。