Inhomogeneous phase-type distributions (IPH) are a broad class of laws which arise from the absorption times of Markov jump processes. In the time-homogeneous particular case, we recover phase-type (PH) distributions. In matrix notation, various functionals corresponding to their distributional properties are explicitly available and succinctly described. As the number of parameters increases, IPH distributions may converge weakly to any probability measure on the positive real line, making them particularly attractive candidates for statistical modelling purposes. Contrary to PH distributions, the IPH class allows for a wide range of tail behaviours, which often leads to adequate estimation with a moderate number of parameters. One of the main difficulties in estimating PH and IPH distributions is their large number of matrix parameters. This drawback is best handled through the expectation-maximisation (EM) algorithm, exploiting the underlying and unobserved Markov structure. The matrixdist package presents tools for IPH distributions to efficiently evaluate functionals, simulate, and carry out maximum likelihood estimation through a three-step EM algorithm. Aggregated and right-censored data are supported by the fitting routines, and in particular, one may estimate time-to-event data, histograms, or discretised theoretical distributions.
翻译:Markov 跳跃过程的吸收时间产生了不相容的相形分布法(IPH),它是一个广泛的法律类别,产生于Markov 跳跃过程的吸收时间。在与时间相异的特定情况下,我们恢复了相形(PH)分布法。在矩阵符号中,与分布特性相对应的各种功能都有明确的可用和简明的描述。随着参数数量的增加,IPH分布法可能微弱地集中到正线上的任何概率测量上,使它们特别具有统计建模用途的吸引力。与PH分布相反,IPH类允许一系列广泛的尾部行为,这往往导致以适度的参数进行充分的估计。估算PH和IPH分布的主要困难之一是其大量矩阵参数。这种缺陷最好通过预期-最大化算法处理,利用基本和未观测过的Markov结构。矩阵软件为ISPH分布提供了工具,以高效地评估功能、模拟和通过三步式EM算法进行最大的可能性估算。在一次EM算法、一次缩算式和次序中,其分类数据或机序中的数据可能得到支持。