Propensity score weighting is an important tool for causal inference and comparative effectiveness research. Besides the inverse probability of treatment weights (IPW), recent development has introduced a general class of balancing weights, corresponding to alternative target populations and estimands. In particular, the overlap weights (OW)lead to optimal covariate balance and estimation efficiency, and a target population of scientific and policy interest. We develop the R package PSweight to provide a comprehensive design and analysis platform for causal inference based on propensity score weighting. PSweight supports (i) a variety of balancing weights, including OW, IPW, matching weights as well as optimal trimming, (ii) binary and multiple treatments, (iii)simple and augmented (double-robust) weighting estimators, (iv) nuisance-adjusted sandwich variances, and (v) ratio estimands for binary and count outcomes. PSweight also provides diagnostic tables and graphs for study design and covariate balance assessment. In addition, PSweight allows for propensity scores and outcome models to be estimated externally by the users. We demonstrate the functionality of the package using a data example from the National Child Development Survey (NCDS), where we evaluate the causal effect of educational attainment on income.


翻译:除了治疗权重的反概率外,最近的发展还引入了平衡权重的一般类别,与替代目标人群和估计量相对应,特别是重叠权重(OW)导致最佳的共差平衡和估计效率,以及科学和政策利益对象群;我们开发了R包PS加权,以根据偏差分加权法为因果关系推断提供全面设计和分析平台;PS加权法还支持(一) 各种平衡权重,包括OW、IPW、匹配权重以及最佳三重制,(二) 二元和多重制治疗,(三) 简单和增强(双压制)估算器的加权,(四) 扭曲调整型三明治差异,以及(五) 中分数和计数结果比率估计。PS重量法还提供诊断表和图表,用于研究设计和计算平衡评估。此外,PS加权法允许使用国家收入衡量和计算结果的分数以及最佳三重处理法,(三) 简化和强化(双压) (双压) (双压) 加权) 加权制加权制加权制加权制加权制加权制,(四) 和加分数计算;以及(我们利用国家收入分析模型对教育成果的用户进行估测算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
8+阅读 · 2019年3月21日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员