Machine learning models play a vital role in the prediction task in several fields of study. In this work, we utilize the ability of machine learning algorithms for the prediction of occurrence of extreme events in a nonlinear mechanical system. Extreme events are rare events which occur ubiquitously in nature. We consider four machine learning models, namely Logistic Regression, Support Vector Machine, Random Forest and Multi-Layer Perceptron in our prediction task. We train these four machine learning models using training set data and compute the performance of each model using the test set data. We show that Multi-Layer Perceptron model performs better among the four models in the prediction of extreme events in the considered system. The persistent behaviour of the considered machine learning models are cross-checked with randomly shuffled training set and test set data.
翻译:机器学习模型在若干研究领域的预测任务中发挥着至关重要的作用。 在这项工作中,我们利用机器学习算法的能力来预测在非线性机械系统中发生的极端事件。 极端事件是无处不在的罕见事件。 我们在预测任务中考虑四种机器学习模型, 即后勤回归、 支持矢量机、 随机森林 和多层感应器。 我们用培训数据集数据来培训这四种机器学习模型, 并用测试数据集数据来计算每个模型的性能。 我们显示,在所考虑的系统中预测极端事件的四种模型中,多层 Perpheron模型表现得更好。 考虑过的机器学习模型的持久行为与随机调整的训练数据集和测试数据集进行交叉核对。