A connected component labeling algorithm is developed for implicitly-defined domains specified by multivariate polynomials. The algorithm operates by recursively subdividing the constraint domain into hyperrectangular subcells until the topology thereon is sufficiently simple; in particular, we devise a topology test using properties of Bernstein polynomials. In many cases the algorithm produces a certificate guaranteeing its correctness, i.e., two points yield the same label if and only if they are path-connected. To robustly handle various kinds of edge cases, the algorithm may assign identical labels to distinct components, but only when they are exactly or nearly touching, relative to a user-controlled length scale. A variety of numerical experiments assess the effectiveness of the overall approach, including statistical analyses on randomly generated multi-component geometry in 2D and 3D, as well as specific examples involving cusps, self-intersections, junctions, and other kinds of singularities.
翻译:为多变量多元数字指定的隐含定义域开发了连接的元件标签算法。 算法通过递归性地将约束域分解为超矩形子细胞,直到其表层足够简单; 特别是, 我们设计了一个使用伯恩斯坦多元数字属性的地形测试。 在许多情况下, 算法产生一个保证其正确性的证书, 即两个点只有在路径连接的情况下才会产生相同的标签。 为了强有力地处理各种边缘案例, 算法可以给不同的部件指定相同的标签, 但只有在它们与用户控制的长度尺度完全或接近接触时, 才能这样做。 各种数字实验评估了总体方法的有效性, 包括对2D和3D中随机生成的多构件几何方法的统计分析, 以及涉及 cussps、 自我截面、 交叉点和其他奇点的具体例子 。