Searching for as yet undetected gamma-ray sources is a major target of the Fermi LAT Collaboration. We present an algorithm capable of identifying such type of sources by non-parametrically clustering the directions of arrival of the high-energy photons detected by the telescope onboard the Fermi spacecraft. n particular, the sources will be identified using a von Mises-Fisher kernel estimate of the photon count density on the unit sphere via an adjustment of the mean-shift algorithm to account for the directional nature of data. This choice entails a number of desirable benefits. It allows us to by-pass the difficulties inherent on the borders of any projection of the photon directions onto a 2-dimensional plane, while guaranteeing high flexibility. The smoothing parameter will be chosen adaptively, by combining scientific input with optimal selection guidelines, as known from the literature. Using statistical tools from hypothesis testing and classification, we furthermore present an automatic way to skim off sound candidate sources from the gamma-ray emitting diffuse background and to quantify their significance. The algorithm was calibrated on simulated data provided by the Fermi LAT Collaboration and will be illustrated on a real Fermi LAT case-study.
翻译:搜索尚未探测到的伽马射线源是Fermi LAT合作机制的一个主要目标。 我们提出一种算法,能够通过非对称地组合Fermi航天器上望远镜探测到的高能光子到达方向,查明这类来源。 特别是,将使用Von Mises-Fisher内核对单位空间光子计密度所作的估计,通过对平均移动算法进行调整,以说明数据的方向性质。这一选择带来一些可取的好处。它使我们能够将光向投影所固有的困难通过二维平面的边界,同时保证高度灵活性。光滑度参数将采用适应性选择,将科学投入与文献中已知的最佳选择准则结合起来。我们还将利用假设测试和分类的统计工具,提出一种自动方法,将伽马射线扩散扩散背景的可靠候选来源进行抽查,并量化其重要性。该算法根据FermiLAT协作提供的模拟数据加以校准,并将在真实的FermiLAT案例研究上加以说明。