Objective: The spinous process angle (SPA) is one of the essential parameters to denote three-dimensional (3-D) deformity of spine. We propose an automatic segmentation method based on Stacked Hourglass Network (SHN) to detect the spinous processes (SP) on ultrasound (US) spine images and to measure the SPAs of clinical scoliotic subjects. Methods: The network was trained to detect vertebral SP and laminae as five landmarks on 1200 ultrasound transverse images and validated on 100 images. All the processed transverse images with highlighted SP and laminae were reconstructed into a 3D image volume, and the SPAs were measured on the projected coronal images. The trained network was tested on 400 images by calculating the percentage of correct keypoints (PCK); and the SPA measurements were evaluated on 50 scoliotic subjects by comparing the results from US images and radiographs. Results: The trained network achieved a high average PCK (86.8%) on the test datasets, particularly the PCK of SP detection was 90.3%. The SPAs measured from US and radiographic methods showed good correlation (r>0.85), and the mean absolute differences (MAD) between two modalities were 3.3{\deg}, which was less than the clinical acceptance error (5{\deg}). Conclusion: The vertebral features can be accurately segmented on US spine images using SHN, and the measurement results of SPA from US data was comparable to the gold standard from radiography.


翻译:目标: 脊柱进程角度( SPA) 是显示脊柱三维( 3- D) 畸形的基本参数之一。 我们提议了一种基于SHN 的自动分解方法, 以根据SHN 粉碎沙漏网络( SHN) 检测超声波脊椎图像上的脊椎进程(SP) 并测量临床精度主题的 SP 。 方法: 网络经过培训,在 1200 个超声波反向图像上将脊椎SP 和 laminae 检测为5个里程碑, 并在100 图像上验证。 所有带有突出的 SP 和 laminae 图像的经处理的跨反向图像都重建为3D 图像, 在预测的coron图像上测量了 SP 。 经过培训的网络通过计算正确关键点的百分比( PCK) 测试了400 和 SPA 测量50 色谱主题。 结果: 受过培训的网络在测试的数据集中, 特别是 PCK 和 SP 可比图像 的 度测量结果为90.3.3, 从 SMA 的绝对 和 度数据 显示 之间的精确度( 5) 和 度 度 度为 度 度 度为 度 度 度 度 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2021年4月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
实战 | 基于SegNet和U-Net的遥感图像语义分割
计算机视觉life
5+阅读 · 2019年3月5日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Keras】基于SegNet和U-Net的遥感图像语义分割
全球人工智能
11+阅读 · 2018年1月22日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
实战 | 基于SegNet和U-Net的遥感图像语义分割
计算机视觉life
5+阅读 · 2019年3月5日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Keras】基于SegNet和U-Net的遥感图像语义分割
全球人工智能
11+阅读 · 2018年1月22日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员