This paper proposes a new substructuring technique for hybrid simulation of steel braced frame structures under seismic loading in which a new machine learning-based model is used to predict the hysteretic response of steel braces. Corroborating numerical data is used to train the model, referred to as PI-SINDy, developed with the aid of the Prandtl-Ishlinskii hysteresis model and sparse identification algorithm. By replacing a brace part of a prototype steel buckling-restrained braced frame with the trained PI-SINDy model, a new simulation technique referred to as data-driven hybrid simulation (DDHS) is established. The accuracy of DDHS is evaluated using the nonlinear response history analysis of the prototype frame subjected to an earthquake ground motion. Compared to a baseline pure numerical model, the results show that the proposed model can accurately predict the hysteretic response of steel buckling-restrained braces.
翻译:本文提出了在地震负荷下对钢支架架结构进行混合模拟的新的次级结构技术,其中使用了一种新的机器学习模型来预测钢支架的歇斯底里反应。对数字数据进行校正用于对模型(称为PI-SINDI)进行培训,该模型是在Prandtl-Ishlinskii 歇斯底里模型和稀有识别算法的帮助下开发的。通过用经过培训的PI-SINDI模型取代原型钢支架-经过再加固的支架支架的支架支架的支架部分,建立了一种称为数据驱动混合模拟(DDHS)的新模拟技术。DHS的准确性是通过对受地震地面运动影响的原型框架的非线性反应历史分析进行评估的。与基线纯数字模型相比,结果显示,拟议的模型可以准确预测受钢支架制支架制约的支架的螺旋性反应。