We study the ability of neural networks to steer or control trajectories of dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we introduce a neural-ODE control (NODEC) framework and find that it can learn control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show that NODEC produces control signals that are highly correlated with optimal (or minimum energy) control signals. Finally, we empirically showcase the high performance and versatility of NODEC for various (non-)linear dynamics and loss functions on different graphs.
翻译:我们研究神经网络控制或控制图表上动态系统的轨迹的能力,我们用神经普通差异方程式(神经值)代表这些动态系统的轨迹。为此,我们引入了一个神经-体(NODEC)控制框架,并发现它可以学习控制信号,将图形动态系统推进到理想的目标状态。虽然我们使用了不限制控制能量的损失功能,但我们的结果表明,NODEC产生的控制信号与最佳(或最低能量)控制信号高度相关。最后,我们从经验上展示了NODEC在不同图表上的各种(非)线性动态和损失功能的高性能和多功能。