The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures. Cardiovascular diseases monitoring, usually involving electrocardiogram (ECG) traces analysis, is one of the most promising and high-impact applications. Nevertheless, to fully exploit the potential of IoMT in this domain, some steps forward are needed. First, the edge-computing paradigm must be added to the picture. A certain level of near-sensor processing has to be enabled, to improve the scalability, portability, reliability, responsiveness of the IoMT nodes. Second, novel, increasingly accurate, data analysis algorithms, such as those based on artificial intelligence and Deep Learning, must be exploited. To reach these objectives, designers and programmers of IoMT nodes, have to face challenging optimization tasks, in order to execute fairly complex computing tasks on low-power wearable and portable processing systems, with tight power and battery lifetime budgets. In this work, we explore the implementation of a cognitive data analysis algorithm, based on a convolutional neural network trained to classify ECG waveforms, on a resource-constrained microcontroller-based computing platform. To minimize power consumption, we add an adaptivity layer that dynamically manages the hardware and software configuration of the device to adapt it at runtime to the required operating mode. Our experimental results show that adapting the node setup to the workload at runtime can save up to 50% power consumption. Our optimized and quantized neural network reaches an accuracy value higher than 97% for arrhythmia disorders detection on MIT-BIH Arrhythmia dataset.
翻译:医学事物(IOMT)的互联网模式正在多个临床试验和医疗程序中成为主流。心血管疾病监测,通常涉及心电图(ECG)的痕量分析,是最具希望和影响最大的应用之一。然而,要充分利用IOMT在这方面的潜力,需要向前迈出一些步骤。首先,必须增加边分算模式,必须使图像成为更复杂的低功耗耗和便携式处理系统,电量和电量一生预算紧张。在这项工作中,我们必须启用一定程度的近感官处理,以提高IOMT节点的可缩放性、可移植性、可靠性和反应能力。第二,必须利用新的、日益准确的数据分析算法,例如基于人工智能和深修读的心力分析法。要达到这些目标,IOMT节点的设计者和程序设计者就必须面对挑战性优化任务。为了在低功率耗耗和电量一生预算下执行相当复杂的计算任务,我们必须根据经训练的神经神经网络来实施认知数据分析算法。在对ECG波状和深思识的计算中,必须利用一种更精确的计算,在资源控制50级的网络上调整我们机动的机能操作的节流的节流数据结构,以调整我们的节能计算结果。要调整我们的节能的节能的节能的节能计算结果,以调整我们的节能的节能的节能的节能。