A major impediment to researchers working in the area of fingerprint recognition is the lack of publicly available, large-scale, fingerprint datasets. The publicly available datasets that do exist contain very few identities and impressions per finger. This limits research on a number of topics, including e.g., using deep networks to learn fixed length fingerprint embeddings. Therefore, we propose PrintsGAN, a synthetic fingerprint generator capable of generating unique fingerprints along with multiple impressions for a given fingerprint. Using PrintsGAN, we synthesize a database of 525k fingerprints (35K distinct fingers, each with 15 impressions). Next, we show the utility of the PrintsGAN generated dataset by training a deep network to extract a fixed-length embedding from a fingerprint. In particular, an embedding model trained on our synthetic fingerprints and fine-tuned on a small number of publicly available real fingerprints (25K prints from NIST SD302) obtains a TAR of 87.03% @ FAR=0.01% on the NIST SD4 database (a boost from TAR=73.37% when only trained on NIST SD302). Prevailing synthetic fingerprint generation methods do not enable such performance gains due to i) lack of realism or ii) inability to generate multiple impressions per finger. We plan to release our database of synthetic fingerprints to the public.
翻译:对从事指纹识别工作的研究人员来说,一个主要障碍是缺乏公开可得的大规模指纹数据集。现有公开的指纹数据集中只有很少的身份和每个手指的印象。这限制了对若干专题的研究,例如,利用深网络学习固定长度指纹嵌入器。因此,我们提议PrintsGAN,一个合成指纹生成器,能够产生独特的指纹,同时给指纹留下多种印象。我们利用PrintsGAN,综合了一个525k指纹数据库(35K不同手指,每个有15个印象)。接下来,我们展示了PrintsGAN通过培训一个深网络生成数据集的效用,以从指纹中提取固定长度的嵌入。特别是,一个经过我们合成指纹培训的嵌入模型,并微调了少量公开公开的指纹(NITSD3002中25K指纹的25K指纹)。我们用NITSD4数据库综合了一个87.03 % @FAR=0.01%的数据库(从TAR=73.37 %,仅接受NISTSD-302培训后,我们通过深网络生成的数据集制成数据集的数据集,我们无法取得这种结果。