Continually learning new classes from a few training examples without forgetting previous old classes demands a flexible architecture with an inevitably growing portion of storage, in which new examples and classes can be incrementally stored and efficiently retrieved. One viable architectural solution is to tightly couple a stationary deep neural network to a dynamically evolving explicit memory (EM). As the centerpiece of this architecture, we propose an EM unit that leverages energy-efficient in-memory compute (IMC) cores during the course of continual learning operations. We demonstrate for the first time how the EM unit can physically superpose multiple training examples, expand to accommodate unseen classes, and perform similarity search during inference, using operations on an IMC core based on phase-change memory (PCM). Specifically, the physical superposition of a few encoded training examples is realized via in-situ progressive crystallization of PCM devices. The classification accuracy achieved on the IMC core remains within a range of 1.28%--2.5% compared to that of the state-of-the-art full-precision baseline software model on both the CIFAR-100 and miniImageNet datasets when continually learning 40 novel classes (from only five examples per class) on top of 60 old classes.
翻译:从几个培训实例中不断学习新课程,同时不忘以前的旧课程,这要求有一个灵活的结构,其储存部分必然会增加,其中新的实例和课程可以逐步储存和有效检索。一个可行的建筑解决办法是将固定的深神经网络与动态演变的显性记忆(EM)紧密地结合起来。作为这一结构的中心部分,我们提议一个EM单元,在持续学习作业过程中利用高能效的模拟计算核心(IMC)来发挥杠杆作用。我们第一次展示了EM单位如何在推断期间将多个培训实例实际添加到一个不可避免增加的部分,将新的实例和课程加以扩大,并在假设期间进行类似的搜索,利用基于阶段变化记忆(PCM)的IMC核心的IMC操作。具体地说,几个编码培训范例的物理超置是通过PCM装置的现场逐步结晶化来实现的。在IMC核心上实现的分类精确度仍然在1.28%-2.5%的范围内,而与在CIFAR-100级和小型网络的60级(仅从每级学习60级的老式实例)最高数据集的40级的40级标准基准软件模型模型模型相比,我们第一次展示的ICFAR-100和微型网络模型中实现。