The present paper deals with the generalization of Midpoint Ellipse Drawing Algorithm (MPEDA) to minimize the error in the existing MPEDA in cartesian form. In this method, we consider three different values of h, i.e., 1, 0.5 and 0.1. For h = 1, all the results of MPEDA have been verified. For other values of h it is observed that as the value of h decreases, the number of iteration increases but the error between the points generated and the original ellipse points decreases and vice-versa.
翻译:本文件论述中点椭圆绘图算法(MPEDA)的概括化,以尽量减少现有MPEDA以碳水化合物形式出现的错误,在这种方法中,我们考虑的是三个不同的数值,即 h, 即 1, 0.5和0.1.。h = 1 。对于 h = 1, MPEDA的所有结果都已经核实。关于其他数值,据观察,由于 h 的减少值,迭代数增加,但产生的点与原椭圆点之间的差则减少,反之亦然。