This paper describes a novel machine learning (ML) framework for tropical cyclone intensity and track forecasting, combining multiple ML techniques and utilizing diverse data sources. Our multimodal framework, called Hurricast, efficiently combines spatial-temporal data with statistical data by extracting features with deep-learning encoder-decoder architectures and predicting with gradient-boosted trees. We evaluate our models in the North Atlantic and Eastern Pacific basins on 2016-2019 for 24-hour lead time track and intensity forecasts and show they achieve comparable mean average error and skill to current operational forecast models while computing in seconds. Furthermore, the inclusion of Hurricast into an operational forecast consensus model could improve over the National Hurricane Center's official forecast, thus highlighting the complementary properties with existing approaches. In summary, our work demonstrates that utilizing machine learning techniques to combine different data sources can lead to new opportunities in tropical cyclone forecasting.
翻译:本文介绍热带气旋强度和跟踪预报的新机器学习框架,结合多种多 ML 技术并利用多种数据来源。我们的多式框架叫做 Hurricast, 有效地将空间-时空数据与统计数据相结合,方法是通过提取深层学习编码解码结构的特征,并与梯度加速的树木进行预测。我们评估了我们在2016-2019年北大西洋和东太平洋盆地的模型,用于24小时的周转时间轨道和强度预测,并表明这些模型在计算数秒钟时达到与当前业务预测模型可比的平均平均误差和技能。此外,将赫里斯特纳入业务预测共识模型可以比国家飓风中心的正式预测改进,从而突出现有方法的补充性。简言之,我们的工作表明,利用机器学习技术将不同数据来源结合起来,可以带来热带气旋预报的新机会。