Speech separation has been well developed, with the very successful permutation invariant training (PIT) approach, although the frequent label assignment switching happening during PIT training remains to be a problem when better convergence speed and achievable performance are desired. In this paper, we propose to perform self-supervised pre-training to stabilize the label assignment in training the speech separation model. Experiments over several types of self-supervised approaches, several typical speech separation models and two different datasets showed that very good improvements are achievable if a proper self-supervised approach is chosen.


翻译:语音分离已经得到很好的发展,采用非常成功的变式培训方法,尽管在PIT培训期间经常出现的标签派任转换在PIT培训期间仍是一个问题,因为需要更快的趋同速度和可实现的绩效。 在本文中,我们提议进行自我监督的预先培训,以稳定语言分离模式培训中的标签派任。 在若干类型的自我监督方法上进行的实验、几个典型的语音隔离模型和两个不同的数据集表明,如果选择适当的自我监督方法,那么可以实现非常良好的改进。

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年5月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2018年1月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年5月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员