Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs.
翻译:大型语言模型已被广泛采用,但需要大量的 GPU 内存才能推断。 我们为变压器的进料和注意力投影层开发了一个 Int8 矩阵倍增程序, 使变压器的进料和注意投影层的倍增程序, 在保留完全精确性能的同时, 将推算所需的内存减半。 我们的方法是, 一个 175B 参数 16/32- 位检查站可以装入, 转换为 Int8, 并在不发生性能退化的情况下立即使用 。 这是通过理解和围绕变压器语言模型中高度系统性能的突现特征特性特性的特性开展工作而得以实现的。 为了应对这些特性, 我们开发了一个两部分的定量化程序, LLM.int8 () 。 我们首先使用向量化的矢量化四分解的量量化, 且在矩阵倍增的每个内产物中, 将每个内产物的正态常态常态常态常态常态常态常态常态常态常态化, 然而, G-B 将这种常态变型的常态变的常态常态常态常态常态常态常态常态常态常态常态变, 将使其在8( LLM8) 的变型常态常态常态常态常态常态常态常态常态常态常态常态性变变的变, 将使其在8 () 以不使用, 。