Variational autoencoders (VAEs) and other generative methods have garnered growing interest not just for their generative properties but also for the ability to dis-entangle a low-dimensional latent variable space. However, few existing generative models take causality into account. We propose a new decoder based framework named the Causal Counterfactual Generative Model (CCGM), which includes a partially trainable causal layer in which a part of a causal model can be learned without significantly impacting reconstruction fidelity. By learning the causal relationships between image semantic labels or tabular variables, we can analyze biases, intervene on the generative model, and simulate new scenarios. Furthermore, by modifying the causal structure, we can generate samples outside the domain of the original training data and use such counterfactual models to de-bias datasets. Thus, datasets with known biases can still be used to train the causal generative model and learn the causal relationships, but we can produce de-biased datasets on the generative side. Our proposed method combines a causal latent space VAE model with specific modification to emphasize causal fidelity, enabling finer control over the causal layer and the ability to learn a robust intervention framework. We explore how better disentanglement of causal learning and encoding/decoding generates higher causal intervention quality. We also compare our model against similar research to demonstrate the need for explicit generative de-biasing beyond interventions. Our initial experiments show that our model can generate images and tabular data with high fidelity to the causal framework and accommodate explicit de-biasing to ignore undesired relationships in the causal data compared to the baseline.


翻译:变异自动编码器(VAE)和其他基因方法不仅因其基因特性而引起越来越多的兴趣,而且因其分解低维潜伏变异空间的能力而引起越来越多的兴趣。然而,现有的变异自动编码器很少考虑到因果关系。我们提议了一个新的变异自动编码器框架,称为Causal 反动生成模型(CCGM),其中包括一个部分可训练的因果层,在这个层中,可以学习因果模型的一部分,而不会对重建的忠诚产生重大影响。通过了解图像正义标签或表列变量之间的因果关系,我们可以分析偏差,干预基因变异模型,并模拟新情景。此外,通过修改因果结构,我们可以产生原始培训数据外的样本,并利用这种反相貌模型去动性模型来降低偏见的数据集。因此,仍然可以使用已知的偏差数据集来训练因果关系模型,并学习因果关系关系,但我们可以在基因化方面产生不偏差的数据。我们提出的方法将一个不因果隐性更深的空间模型结合起来,对基因变异的基因模型进行干涉模型,并具体地调整了因果性数据变正值分析能力,以强调因果关系的因果关系/正统化框架。我们如何学会学会学会学会学会学会学会学习如何学会研究。我们如何研究。我们如何研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月23日
Arxiv
0+阅读 · 2022年8月22日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员