We prove that $1-o(1)$ fraction of all $k$-SAT functions on $n$ Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer $k$ and as $n \to \infty$. This resolves a conjecture by Bollob\'as, Brightwell, and Leader from 2003. This paper is the second half of a two-part work solving the problem. The first part, by Dong, Mani, and Zhao, reduces the conjecture to a Tur\'an problem on partially directed hypergraphs. In this paper we solve this Tur\'an problem.
翻译:我们证明,对于任何固定正数整数美元和美元至美元等值而言,布尔兰变量中所有美元-沙特元函数的1美元-1美元部分(即先剔除一些变量之后的单色)是非的。这解决了Bollob'as、Brightwell和领袖从2003年起的推测。本文是解决这个问题的两部分工作的后半部分。第一部分由东、马尼和赵文撰写,将图示减为部分定向高音中的图问题。在本论文中,我们解决了图尔的问题。