A fundamental algorithm for data analytics at the edge of wireless networks is distributed principal component analysis (DPCA), which finds the most important information embedded in a distributed high-dimensional dataset by distributed computation of a reduced-dimension data subspace, called principal components (PCs). In this paper, to support one-shot DPCA in wireless systems, we propose a framework of analog MIMO transmission featuring the uncoded analog transmission of local PCs for estimating the global PCs. To cope with channel distortion and noise, two maximum-likelihood (global) PC estimators are presented corresponding to the cases with and without receive channel state information (CSI). The first design, termed coherent PC estimator, is derived by solving a Procrustes problem and reveals the form of regularized channel inversion where the regulation attempts to alleviate the effects of both channel noise and data noise. The second one, termed blind PC estimator, is designed based on the subspace channel-rotation-invariance property and computes a centroid of received local PCs on a Grassmann manifold. Using the manifold-perturbation theory, tight bounds on the mean square subspace distance (MSSD) of both estimators are derived for performance evaluation. The results reveal simple scaling laws of MSSD concerning device population, data and channel signal-to-noise ratios (SNRs), and array sizes. More importantly, both estimators are found to have identical scaling laws, suggesting the dispensability of CSI to accelerate DPCA. Simulation results validate the derived results and demonstrate the promising latency performance of the proposed analog MIMO.


翻译:在无线网络边缘进行数据分析的基本算法是分布式主元件分析(DPCA),该算法发现最重要的信息嵌入分布式高维数据集中,通过分布式计算一个叫做主要元件(PCs)的减少dimenion数据子空间(即主要元件),在本文中,为支持无线系统中的一发DPCA,我们提议了一个模拟MIMO传输框架,以未经编码的模拟传输当地个人电脑来估计全球个人电脑。为了应对频道扭曲和噪音,提供了两个与案例相对应的(全球)PC加速测算器,以接收频道状态信息(CSI)为单位。第一个设计,称为统一的PC测算器测量器测量器的分布式数据集,通过解决Procrustees问题,并展示常规化频道噪音和数据噪音的影响。第二个模拟模拟模拟模拟的模拟模拟,根据亚空频道调色色色度变换特性和对已发现的当地个人电脑的精确度结果进行校准。使用Sqrrow-permann Stal-simperal Stal-deal Sladeal Slax Slader Salide, Slader Slader Salide 和Salide Salide Slavial Salide Salibs 的Salide 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
114+阅读 · 2021年7月24日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员