In this paper we present a family of $q$-ary nonlinear quasi-perfect codes with covering radius 2. The codes have length $n = q^m$ and size $ M = q^{n - m - 1}$ where $q$ is a prime power, $q \geq 3$, $m$ is an integer, $m \geq 2$. We prove that there are more than $q^{q^{cn}}$ nonequivalent such codes of length $n$, for all sufficiently large $n$ and a constant $c = \frac{1}{q} - \varepsilon$.
翻译:在本文中,我们提出一个以美元计价的非线性准完美代码,覆盖半径2。这些代码的长度为美元=美元,大小为美元=美元=美元-m-1美元,其中美元为主要功率,美元=美元3美元,美元为整数,美元=2美元。我们证明,对于足够大的美元和恒定值为美元=美元=美元=美元=美元=美元=美元=美元。我们证明,这种长度代码的长度不等值超过美元。