Given a family of sets on the plane, we say that the family is intersecting if for any two sets from the family their interiors intersect. In this paper, we study intersecting families of triangles with vertices in a given set of points. In particular, we show that if a set $P$ of $n$ points is in convex position, then the largest intersecting family of triangles with vertices in $P$ contains at most $(\frac{1}{4}+o(1))\binom{n}{3}$ triangles.
翻译:鉴于飞机上有一家人,我们说,如果家庭内部有两套,这个家庭就会相互交叉。在本文中,我们研究在一组点上将三角形的三角形与脊椎的三角形交叉在一起。特别是,我们表明,如果设定的一美元点为零点,那么以美元计的三角形的最大交叉式组合最多包含$(\frac{1 ⁇ 4 ⁇ 4 ⁇ o(1))\binom{n ⁇ 3}的三角形。